Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Appl Toxicol ; 43(12): 1872-1882, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37501093

RESUMEN

Our previous study showed that sodium arsenite (200 mg/L) affected the nervous system and induced motor neuron development via the Sonic hedgehog pathway in zebrafish larvae. To gain more insight into the effects of arsenite on other signaling pathways, including apoptosis, we have performed quantitative polymerase chain reaction array-based gene expression analyses. The 96-well array plates contained primers for 84 genes representing 10 signaling pathways that regulate several biological functions, including apoptosis. We exposed eggs at 5 h postfertilization until the 72 h postfertilization larval stage to 200 mg/L sodium arsenite. In the Janus kinase/signal transducers and activators of transcription, nuclear factor κ-light-chain-enhancer of activated B cells, and Wingless/Int-1 signaling pathways, the expression of only one gene in each pathway was significantly altered. The expression of multiple genes was altered in the p53 and oxidative stress pathways. Sodium arsenite induced excessive apoptosis in the larvae. This compelled us to analyze specific genes in the p53 pathway, including cdkn1a, gadd45aa, and gadd45ba. Our data suggest that the p53 pathway is likely responsible for sodium arsenite-induced apoptosis. In addition, sodium arsenite significantly reduced global DNA methylation in the zebrafish larvae, which may indicate that epigenetic factors could be dysregulated after arsenic exposure. Together, these data elucidate potential mechanisms of arsenic toxicity that could improve understanding of arsenic's effects on human health.


Asunto(s)
Arsénico , Arsenitos , Animales , Humanos , Pez Cebra/genética , Arsénico/toxicidad , Proteína p53 Supresora de Tumor , Proteínas Hedgehog/farmacología , Arsenitos/toxicidad , Perfilación de la Expresión Génica , Apoptosis
2.
Methods Mol Biol ; 2557: 349-364, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36512226

RESUMEN

The Golgi-associated retrograde protein (GARP) complex is proposed to tether endosome-derived transport vesicles, but the exact function and mechanism of GARP action are not completely understood. To uncover the GARP function in human cells, we employ CRISPR/Cas9 strategy and knock out (KO) the unique VPS54 subunit of the GARP complex. In this chapter, we describe the detailed method of generating CRISPR/Cas9-mediated VPS54-KO in hTERT-RPE1 cells, rescue of resulting KO cells with stable near-endogenous expression of myc-tagged VPS54, and validation of KO and rescued (KO-R) cells using Western blot and immunofluorescence approaches. This approach is helpful in uncovering new functions of the GARP and other vesicle tethering complexes.


Asunto(s)
Aparato de Golgi , Proteínas de Transporte Vesicular , Humanos , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Aparato de Golgi/metabolismo , Endosomas/metabolismo , Línea Celular , Vesículas Transportadoras/metabolismo
3.
Front Cell Dev Biol ; 10: 1066504, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36578782

RESUMEN

Golgi-associated retrograde protein (GARP) is an evolutionary conserved heterotetrameric protein complex that tethers endosome-derived vesicles and is vital for Golgi glycosylation. Microscopy and proteomic approaches were employed to investigate defects in Golgi physiology in RPE1 cells depleted for the GARP complex. Both cis and trans-Golgi compartments were significantly enlarged in GARP-knock-out (KO) cells. Proteomic analysis of Golgi-enriched membranes revealed significant depletion of a subset of Golgi residents, including Ca2+ binding proteins, enzymes, and SNAREs. Validation of proteomics studies revealed that SDF4 and ATP2C1, related to Golgi calcium homeostasis, as well as intra-Golgi v-SNAREs GOSR1 and BET1L, were significantly depleted in GARP-KO cells. Finding that GARP-KO is more deleterious to Golgi physiology than deletion of GARP-sensitive v-SNAREs, prompted a detailed investigation of COPI trafficking machinery. We discovered that in GARP-KO cells COPI is significantly displaced from the Golgi and partially relocalized to the ER-Golgi intermediate compartment (ERGIC). Moreover, COPI accessory proteins GOLPH3, ARFGAP1, GBF1, and BIG1 are also relocated to off-Golgi compartments. We propose that the dysregulation of COPI machinery, along with the depletion of Golgi v-SNAREs and alteration of Golgi Ca2+ homeostasis, are the major driving factors for the depletion of Golgi resident proteins, structural alterations, and glycosylation defects in GARP deficient cells.

4.
Mol Biol Cell ; 32(17): 1594-1610, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34161137

RESUMEN

The Golgi complex is a central hub for intracellular protein trafficking and glycosylation. Steady-state localization of glycosylation enzymes is achieved by a combination of mechanisms involving retention and recycling, but the machinery governing these mechanisms is poorly understood. Herein we show that the Golgi-associated retrograde protein (GARP) complex is a critical component of this machinery. Using multiple human cell lines, we show that depletion of GARP subunits impairs Golgi modification of N- and O-glycans and reduces the stability of glycoproteins and Golgi enzymes. Moreover, GARP-knockout (KO) cells exhibit reduced retention of glycosylation enzymes in the Golgi. A RUSH assay shows that, in GARP-KO cells, the enzyme beta-1,4-galactosyltransferase 1 is not retained at the Golgi complex but instead is missorted to the endolysosomal system. We propose that the endosomal system is part of the trafficking itinerary of Golgi enzymes or their recycling adaptors and that the GARP complex is essential for recycling and stabilization of the Golgi glycosylation machinery. [Media: see text].


Asunto(s)
Aparato de Golgi/metabolismo , Transporte de Proteínas/fisiología , Proteínas de Transporte Vesicular/metabolismo , Vesículas Citoplasmáticas/metabolismo , Endosomas/metabolismo , Glicosilación , Células HeLa , Humanos , Lisosomas/metabolismo , Proteínas de la Membrana/metabolismo , Red trans-Golgi/metabolismo
5.
Front Cell Dev Biol ; 7: 118, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31334232

RESUMEN

The conserved oligomeric complex (COG) is a multi-subunit vesicle tethering complex that functions in retrograde trafficking at the Golgi. We have previously demonstrated that the formation of enlarged endo-lysosomal structures (EELSs) is one of the major glycosylation-independent phenotypes of cells depleted for individual COG complex subunits. Here, we characterize the EELSs in HEK293T cells using microscopy and biochemical approaches. Our analysis revealed that the EELSs are highly acidic and that vATPase-dependent acidification is essential for the maintenance of this enlarged compartment. The EELSs are accessible to both trans-Golgi enzymes and endocytic cargo. Moreover, the EELSs specifically accumulate endolysosomal proteins Lamp2, CD63, Rab7, Rab9, Rab39, Vamp7, and STX8 on their surface. The EELSs are distinct from lysosomes and do not accumulate active Cathepsin B. Retention using selective hooks (RUSH) experiments revealed that biosynthetic cargo mCherry-Lamp1 reaches the EELSs much faster as compared to both receptor-mediated and soluble endocytic cargo, indicating TGN origin of the EELSs. In support to this hypothesis, EELSs are enriched with TGN specific lipid PI4P. Additionally, analysis of COG4/VPS54 double KO cells revealed that the activity of the GARP tethering complex is necessary for EELSs' accumulation, indicating that protein mistargeting and the imbalance of Golgi-endosome membrane flow leads to the formation of EELSs in COG-deficient cells. The EELSs are likely to serve as a degradative storage hybrid organelle for mistargeted Golgi enzymes and underglycosylated glycoconjugates. To our knowledge this is the first report of the formation of an enlarged hybrid endosomal compartment in a response to malfunction of the intra-Golgi trafficking machinery.

6.
Traffic ; 19(6): 463-480, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29573151

RESUMEN

The conserved oligomeric Golgi (COG) complex controls membrane trafficking and ensures Golgi homeostasis by orchestrating retrograde vesicle trafficking within the Golgi. Human COG defects lead to severe multisystemic diseases known as COG-congenital disorders of glycosylation (COG-CDG). To gain better understanding of COG-CDGs, we compared COG knockout cells with cells deficient to 2 key enzymes, Alpha-1,3-mannosyl-glycoprotein 2-beta-N-acetylglucosaminyltransferase and uridine diphosphate-glucose 4-epimerase (GALE), which contribute to proper N- and O-glycosylation. While all knockout cells share similar defects in glycosylation, these defects only account for a small fraction of observed COG knockout phenotypes. Glycosylation deficiencies were not associated with the fragmented Golgi, abnormal endolysosomes, defective sorting and secretion or delayed retrograde trafficking, indicating that these phenotypes are probably not due to hypoglycosylation, but to other specific interactions or roles of the COG complex. Importantly, these COG deficiency specific phenotypes were also apparent in COG7-CDG patient fibroblasts, proving the human disease relevance of our CRISPR knockout findings. The knowledge gained from this study has important implications, both for understanding the physiological role of COG complex in Golgi homeostasis in eukaryotic cells, and for better understanding human diseases associated with COG/Golgi impairment.


Asunto(s)
Aparato de Golgi/metabolismo , Azúcares/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/fisiología , Línea Celular , Glicosilación , Células HEK293 , Humanos , Fenotipo , Transporte de Proteínas/fisiología
7.
Sci Rep ; 6: 29139, 2016 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-27385402

RESUMEN

The conserved oligomeric Golgi (COG) complex is a peripheral membrane protein complex which orchestrates tethering of intra-Golgi vesicles. We found that COG1-4 (lobe A) and 5-8 (lobe B) protein assemblies are present as independent sub-complexes on cell membranes. Super-resolution microscopy demonstrates that COG sub-complexes are spatially separated on the Golgi with lobe A preferential localization on Golgi stacks and the presence of lobe B on vesicle-like structures, where it physically interacts with v-SNARE GS15. The localization and specific interaction of the COG sub-complexes with the components of vesicle tethering/fusion machinery suggests their different roles in the vesicle tethering cycle. We propose and test a novel model that employs association/disassociation of COG sub-complexes as a mechanism that directs vesicle tethering at Golgi membranes. We demonstrate that defective COG assembly or restriction of tethering complex disassembly by a covalent COG1-COG8 linkage is inhibitory to COG complex activity, supporting the model.


Asunto(s)
Aparato de Golgi/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas Qc-SNARE/metabolismo , Secuencia de Aminoácidos , Membrana Celular/metabolismo , Glicosilación , Aparato de Golgi/ultraestructura , Células HEK293 , Células HeLa , Humanos , Membranas Intracelulares/metabolismo , Modelos Biológicos , Complejos Multiproteicos/química , Unión Proteica , Multimerización de Proteína , Estabilidad Proteica , Subunidades de Proteína/metabolismo , Transporte de Proteínas , Proteínas Qc-SNARE/química , Vesículas Secretoras/metabolismo
8.
Front Cell Dev Biol ; 4: 13, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26973836

RESUMEN

Unexpectedly, members of the Rab VI subfamily exhibit considerable variation in their effects on Golgi organization and trafficking. By fluorescence microscopy, neither depletion nor overexpression of the GDP-locked form of Rab6a/a', the first trans Golgi-associated Rab protein discovered, affects Golgi ribbon organization while, on the other hand, both Rab41/6d depletion and overexpression of GDP-locked form cause Golgi fragmentation into a cluster of punctate elements, suggesting that Rab41/6d has an active role in maintenance of Golgi ribbon organization. To establish a molecular basis for these differences, we screened for Rab41/6d interacting proteins by yeast two-hybrid assay. 155 non-repetitive hits were isolated and sequenced, and after searching in NCBI database, 102 different proteins and protein fragments were identified. None of these hits overlapped with any published Rab6a/a' effector. Eight putative Rab41 interactors involved in membrane trafficking were found. Significantly, these exhibited a preferential interaction with GTP- vs. GDP-locked Rab41/6d. Of the 8 hits, the dynactin 6, syntaxin 8, and Kif18A plasmids were the only ones expressing the full-length protein. Hence, these 3 proteins were selected for further study. We found that depletion of dynactin 6 or syntaxin 8, but not Kif18A, resulted in a fragmented Golgi apparatus that displayed a Rab41/6d knockdown phenotype, i.e., the Golgi apparatus was disrupted into a cluster of punctate Golgi elements. Co-immunoprecipation experiments verified that the interaction of dynactin 6 and syntaxin 8 with GTP-locked Rab41/6d was stronger than that with wild type Rab41/6d and least with the GDP-locked form. In contrast, co-immunoprecipitation interaction with Rab6a was greatest with the GDP-locked Rab6a, suggestive of a non-physiological interaction. In conclusion, we suggest that dynactin 6, a subunit of dynactin complex, the minus-end-directed, dynein motor, provides a sufficient molecular basis to explain the active role of Rab41/6d in maintaining Golgi ribbon organization while syntaxin 8 contributes more indirectly to Golgi positioning.

9.
Methods Mol Biol ; 1270: 167-77, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25702117

RESUMEN

Docking and fusion of transport carriers in eukaryotic cells are regulated by a family of multi-subunit tethering complexes (MTC) that sequentially and/or simultaneously interact with other components of vesicle fusion machinery, such as SNAREs, Rabs, coiled-coil tethers, and vesicle coat components. Probing for interactions of multi-protein complexes has relied heavily on the method of exogenously expressing individual proteins and then determining their interaction stringency. An obvious pitfall of this method is that the protein interactions are not occurring in their native multi-subunit state. Here, we describe an assay where we express all eight subunits of the conserved oligomeric Golgi (COG) complex that contain the same triple-Myc epitope tag and then an assay for the (sub) complex's interaction with known protein partners. The expression of all eight proteins allows for the assembled complex to interact with partner proteins, and by having the same tag on all eight COG subunits, we are able to very accurately quantify the interaction with each subunit. The use of this assay has highlighted a very important level of specificity of interactions between COG subcomplexes and their intracellular partners.


Asunto(s)
Expresión Génica , Multimerización de Proteína , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Animales , Western Blotting , Línea Celular , Aparato de Golgi/metabolismo , Humanos , Inmunoprecipitación , Plásmidos/genética , Unión Proteica , Transporte de Proteínas , Proteínas Recombinantes de Fusión/química , Transfección , Proteínas de Transporte Vesicular/química
10.
Proc Natl Acad Sci U S A ; 111(44): 15762-7, 2014 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-25331899

RESUMEN

The conserved oligomeric Golgi (COG) complex is required, along with SNARE and Sec1/Munc18 (SM) proteins, for vesicle docking and fusion at the Golgi. COG, like other multisubunit tethering complexes (MTCs), is thought to function as a scaffold and/or chaperone to direct the assembly of productive SNARE complexes at the sites of membrane fusion. Reflecting this essential role, mutations in the COG complex can cause congenital disorders of glycosylation. A deeper understanding of COG function and dysfunction will likely depend on elucidating its molecular structure. Despite some progress toward this goal, including EM studies of COG lobe A (subunits 1-4) and higher-resolution structures of portions of Cog2 and Cog4, the structures of COG's eight subunits and the principles governing their assembly are mostly unknown. Here, we report the crystal structure of a complex between two lobe B subunits, Cog5 and Cog7. The structure reveals that Cog5 is a member of the complexes associated with tethering containing helical rods (CATCHR) fold family, with homology to subunits of other MTCs including the Dsl1, exocyst, and Golgi-associated retrograde protein (GARP) complexes. The Cog5-Cog7 interaction is analyzed in relation to the Dsl1 complex, the only other CATCHR-family MTC for which subunit interactions have been characterized in detail. Biochemical and functional studies validate the physiological relevance of the observed Cog5-Cog7 interface, indicate that it is conserved from yeast to humans, and demonstrate that its disruption in human cells causes defects in trafficking and glycosylation.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/química , Complejos Multiproteicos/química , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Cristalografía por Rayos X , Humanos , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína
11.
Cell Logist ; 4(1): e27888, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24649395

RESUMEN

The conserved oligomeric Golgi complex is a peripheral membrane protein complex that orchestrates the tethering and fusion of intra-Golgi transport carriers with Golgi membranes. In this study we have investigated the membrane attachment of the COG complex and it's on/off dynamic on Golgi membranes. Several complimentary approaches including knock-sideways depletion, FRAP, and FLIP revealed that assembled COG complex is not diffusing from Golgi periphery in live HeLa cells. Moreover, COG subunits remained membrane-associated even in COG4 and COG7 depleted cells when Golgi architecture was severely affected. Overexpression of myc-tagged COG sub-complexes revealed that different membrane-associated COG partners including ß-COP, p115 and SNARE STX5 preferentially bind to different COG assemblies, indicating that COG subunits interact with Golgi membranes in a multipronged fashion.

12.
Mol Biol Cell ; 24(22): 3534-44, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24048449

RESUMEN

Oxysterol-binding protein (OSBP) and OSBP-related proteins (ORPs) have been implicated in the distribution of sterols among intracellular organelles. OSBP regulates the Golgi cholesterol level, but how it relates to Golgi function is elusive. Here we report that OSBP is essential for the localization of intra-Golgi soluble vesicle N-ethylmaleimide-sensitive fusion attachment protein receptors (v-SNAREs). Depletion of OSBP by small interfering RNA causes mislocalization of intra-Golgi v-SNAREs GS28 and GS15 throughout the cytoplasm without affecting the perinuclear localization of Golgi target-SNARE syntaxin5 and reduces the abundance of a Golgi enzyme, mannosidase II (Man II). GS28 mislocalization and Man II reduction are also induced by cellular cholesterol depletion. Three domains of OSBP-an endoplasmic reticulum-targeting domain, a Golgi-targeting domain, and a sterol-binding domain-are all required for Golgi localization of GS28. Finally, GS28 mislocalization and Man II reduction in OSBP-depleted cells are largely restored by depletion of ArfGAP1, a regulator of the budding of coat protein complex (COP)-I vesicles. From these results, we postulate that Golgi cholesterol level, which is controlled by OSBP, is essential for Golgi localization of intra-Golgi v-SNAREs by ensuring proper COP-I vesicle transport.


Asunto(s)
Colesterol/metabolismo , Aparato de Golgi/metabolismo , Receptores de Esteroides/genética , Proteínas SNARE/genética , Animales , Proteína Coat de Complejo I/genética , Proteína Coat de Complejo I/metabolismo , Citoplasma/metabolismo , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Regulación de la Expresión Génica , Aparato de Golgi/ultraestructura , Células HeLa , Humanos , Manosidasas/genética , Manosidasas/metabolismo , Microscopía Confocal , Mutación , Estructura Terciaria de Proteína , Transporte de Proteínas , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Conejos , Receptores de Esteroides/antagonistas & inhibidores , Receptores de Esteroides/química , Proteínas SNARE/metabolismo , Transducción de Señal , Vesículas Transportadoras/metabolismo , Vesículas Transportadoras/ultraestructura
13.
Nat Commun ; 4: 1553, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23462996

RESUMEN

Vesicular tethers and SNAREs (soluble N-ethylmalemide-sensitive fusion attachment protein receptors) are two key protein components of the intracellular membrane-trafficking machinery. The conserved oligomeric Golgi (COG) complex has been implicated in the tethering of retrograde intra-Golgi vesicles. Here, using yeast two-hybrid and co-immunoprecipitation approaches, we show that three COG subunits, namely COG4, 6 and 8, are capable of interacting with defined Golgi SNAREs, namely STX5, STX6, STX16, GS27 and SNAP29. Comparative analysis of COG8-STX16 and COG4-STX5 interactions by a COG-based mitochondrial relocalization assay reveals that the COG8 and COG4 proteins initiate the formation of two different tethering platforms that can facilitate the redirection of two populations of Golgi transport intermediates to the mitochondrial vicinity. Our results uncover a role for COG sub-complexes in defining the specificity of vesicular sorting within the Golgi.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas SNARE/metabolismo , Animales , Biomarcadores/metabolismo , Chlorocebus aethiops , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Modelos Biológicos , Complejos Multiproteicos/ultraestructura , Unión Proteica , Estructura Terciaria de Proteína , Subunidades de Proteína/metabolismo , Transporte de Proteínas , Ratas , Proteínas Recombinantes de Fusión/metabolismo , Proteínas SNARE/química , Toxina Shiga/metabolismo , Vesículas Transportadoras/metabolismo , Vesículas Transportadoras/ultraestructura , Células Vero
14.
Traffic ; 14(2): 194-204, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23057818

RESUMEN

Vesicular tethers and SNAREs are two key protein components that govern docking and fusion of intracellular membrane carriers in eukaryotic cells. The conserved oligomeric Golgi (COG) complex has been specifically implicated in the tethering of retrograde intra-Golgi vesicles. Using yeast two-hybrid and co-immunoprecipitation approaches, we show that the COG6 subunit of the COG complex is capable of interacting with a subset of Golgi SNAREs, namely STX5, STX6, GS27 and SNAP29. Interaction with SNAREs is accomplished via the universal SNARE-binding motif of COG6. Overexpression of COG6, or its depletion from cells, disrupts the integrity of the Golgi complex. Importantly, COG6 protein lacking the SNARE-binding domain is deficient in Golgi binding, and is not capable of inducing Golgi complex fragmentation when overexpressed. These results indicate that COG6-SNARE interactions are important for both COG6 localization and Golgi integrity.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Aparato de Golgi/metabolismo , Proteínas SNARE/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Sitios de Unión , Células HeLa , Humanos , Mutación , Unión Proteica , ARN Interferente Pequeño , Proteínas SNARE/genética , Vesículas Transportadoras/metabolismo , Técnicas del Sistema de Dos Híbridos
15.
J Biol Chem ; 288(6): 4229-40, 2013 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-23239882

RESUMEN

Protein sorting between eukaryotic compartments requires vesicular transport, wherein tethering provides the first contact between vesicle and target membranes. Here we map and start to functionally analyze the interaction network of the conserved oligomeric Golgi (COG) complex that mediates retrograde tethering at the Golgi. The interactions of COG subunits with members of transport factor families assign the individual subunits as specific interaction hubs. Functional analysis of selected interactions suggests a mechanistic tethering model. We find that the COG complex interacts with two different Rabs in addition to each end of the golgin "TATA element modulatory factor" (TMF). This allows COG to potentially bridge the distance between the distal end of the golgin and the target membrane thereby promoting tighter docking. Concurrently we show that the central portion of TMF can bind to Golgi membranes that are liberated of their COPI cover. This latter interaction could serve to bring vesicle and target membranes into close apposition prior to fusion. A target selection mechanism, in which a hetero-oligomeric tethering factor organizes Rabs and coiled transport factors to enable protein sorting specificity, could be applicable to vesicle targeting throughout eukaryotic cells.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Proteínas de Unión al ADN/metabolismo , Aparato de Golgi/metabolismo , Membranas Intracelulares/metabolismo , Complejos Multiproteicos/metabolismo , Factores de Transcripción/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteína Coat de Complejo I/genética , Proteína Coat de Complejo I/metabolismo , Proteínas de Unión al ADN/genética , Aparato de Golgi/genética , Células HEK293 , Células HeLa , Humanos , Complejos Multiproteicos/genética , Unión Proteica , Transporte de Proteínas/fisiología , Factores de Transcripción/genética , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
16.
Glycobiology ; 21(12): 1554-69, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21421995

RESUMEN

Cell surface lectin staining, examination of Golgi glycosyltransferases stability and localization, and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) analysis were employed to investigate conserved oligomeric Golgi (COG)-dependent glycosylation defects in HeLa cells. Both Griffonia simplicifolia lectin-II and Galanthus nivalus lectins were specifically bound to the plasma membrane glycoconjugates of COG-depleted cells, indicating defects in activity of medial- and trans-Golgi-localized enzymes. In response to siRNA-induced depletion of COG complex subunits, several key components of Golgi glycosylation machinery, including MAN2A1, MGAT1, B4GALT1 and ST6GAL1, were severely mislocalized. MALDI-TOF analysis of total N-linked glycoconjugates indicated a decrease in the relative amount of sialylated glycans in both COG3 KD and COG4 KD cells. In agreement to a proposed role of the COG complex in retrograde membrane trafficking, all types of COG-depleted HeLa cells were deficient in the Brefeldin A- and Sar1 DN-induced redistribution of Golgi resident glycosyltransferases to the endoplasmic reticulum. The retrograde trafficking of medial- and trans-Golgi-localized glycosylation enzymes was affected to a larger extent, strongly indicating that the COG complex regulates the intra-Golgi protein movement. COG complex-deficient cells were not defective in Golgi re-assembly after the Brefeldin A washout, confirming specificity in the retrograde trafficking block. The lobe B COG subcomplex subunits COG6 and COG8 were localized on trafficking intermediates that carry Golgi glycosyltransferases, indicating that the COG complex is directly involved in trafficking and maintenance of Golgi glycosylation machinery.


Asunto(s)
Evolución Molecular , Aparato de Golgi/química , Aparato de Golgi/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/análisis , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Células CHO , Células Cultivadas , Cricetinae , Glicosilación , Glicosiltransferasas/metabolismo , Aparato de Golgi/enzimología , Células HeLa , Humanos
17.
Traffic ; 10(10): 1502-17, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19678899

RESUMEN

Toxin trafficking studies provide valuable information about endogenous pathways of intracellular transport. Subtilase cytotoxin (SubAB) is transported in a retrograde manner through the endosome to the Golgi and then to the endoplasmic reticulum (ER), where it specifically cleaves the ER chaperone BiP/GRP78 (Binding immunoglobin protein/Glucose-Regulated Protein of 78 kDa). To identify the SubAB Golgi trafficking route, we have used siRNA-mediated silencing and immunofluorescence microscopy in HeLa and Vero cells. Knockdown (KD) of subunits of the conserved oligomeric Golgi (COG) complex significantly delays SubAB cytotoxicity and blocks SubAB trafficking to the cis Golgi. Depletion of Rab6 and beta-COP proteins causes a similar delay in SubAB-mediated GRP78 cleavage and did not augment the trafficking block observed in COG KD cells, indicating that all three Golgi factors operate on the same 'fast' retrograde trafficking pathway. SubAB trafficking is completely blocked in cells deficient in the Golgi SNARE Syntaxin 5 and does not require the activity of endosomal sorting nexins SNX1 and SNX2. Surprisingly, depletion of Golgi tethers p115 and golgin-84 that regulates two previously described coat protein I (COPI) vesicle-mediated pathways did not interfere with SubAB trafficking, indicating that SubAB is exploiting a novel COG/Rab6/COPI-dependent retrograde trafficking pathway.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Proteína Coat de Complejo I/metabolismo , Proteínas de Escherichia coli/metabolismo , Aparato de Golgi/metabolismo , Subtilisinas/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Animales , Western Blotting , Técnicas de Cultivo de Célula , Chlorocebus aethiops , Proteína Coat de Complejo I/genética , Electroforesis en Gel de Poliacrilamida , Chaperón BiP del Retículo Endoplásmico , Células HeLa , Humanos , Microscopía Fluorescente , Subunidades de Proteína , Transporte de Proteínas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transfección , Células Vero , Proteínas de Unión al GTP rab/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...